Allotropism

Terdapatnya substansi dalam dua atau lebih bentuk berbeda dengan sifat fisik berbeda, contohnya, grafit dan intan.

Allotropism (Wikipedia)
Not to be confused with Allotrophy.
Diamond and graphite are two allotropes of carbon: pure forms of the same element that differ in crystalline structure.

Allotropy or allotropism (from Greek ἄλλος (allos), meaning 'other', and τρόπος (tropos), meaning 'manner, form') is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of these elements. Allotropes are different structural modifications of an element; the atoms of the element are bonded together in a different manner. For example, the allotropes of carbon include diamond (where the carbon atoms are bonded together in a tetrahedral lattice arrangement), graphite (where the carbon atoms are bonded together in sheets of a hexagonal lattice), graphene (single sheets of graphite), and fullerenes (where the carbon atoms are bonded together in spherical, tubular, or ellipsoidal formations). The term allotropy is used for elements only, not for compounds. The more general term, used for any crystalline material, is polymorphism. Allotropy refers only to different forms of an element within the same phase (i.e. different solid, liquid or gas forms); these different states are not, themselves, considered to be examples of allotropy.

For some elements, allotropes have different molecular formulae which can persist in different phases – for example, two allotropes of oxygen (dioxygen, O2, and ozone, O3), can both exist in the solid, liquid and gaseous states. Conversely, some elements do not maintain distinct allotropes in different phases – for example phosphorus has numerous solid allotropes, which all revert to the same P4 form when melted to the liquid state.